Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.

Identifieur interne : 000925 ( Main/Exploration ); précédent : 000924; suivant : 000926

Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.

Auteurs : Melania Abrahamian [États-Unis] ; Meenakshi Kagda [États-Unis] ; Audrey M V. Ah-Fong [États-Unis] ; Howard S. Judelson [États-Unis]

Source :

RBID : pubmed:29202688

Descripteurs français

English descriptors

Abstract

BACKGROUND

An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides.

RESULTS

Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin.

CONCLUSIONS

Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology.


DOI: 10.1186/s12862-017-1087-8
PubMed: 29202688
PubMed Central: PMC5715807


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.</title>
<author>
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kagda, Meenakshi" sort="Kagda, Meenakshi" uniqKey="Kagda M" first="Meenakshi" last="Kagda">Meenakshi Kagda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA. howard.judelson@ucr.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29202688</idno>
<idno type="pmid">29202688</idno>
<idno type="doi">10.1186/s12862-017-1087-8</idno>
<idno type="pmc">PMC5715807</idno>
<idno type="wicri:Area/Main/Corpus">000874</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000874</idno>
<idno type="wicri:Area/Main/Curation">000874</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000874</idno>
<idno type="wicri:Area/Main/Exploration">000874</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.</title>
<author>
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kagda, Meenakshi" sort="Kagda, Meenakshi" uniqKey="Kagda M" first="Meenakshi" last="Kagda">Meenakshi Kagda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA. howard.judelson@ucr.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521</wicri:regionArea>
<wicri:noRegion>92521</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Cytosol (MeSH)</term>
<term>Eukaryotic Cells (metabolism)</term>
<term>Genes (MeSH)</term>
<term>Glycolysis (MeSH)</term>
<term>Mitochondria (genetics)</term>
<term>Mitochondria (metabolism)</term>
<term>Oomycetes (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Phytophthora infestans (metabolism)</term>
<term>Serine (biosynthesis)</term>
<term>Stramenopiles (enzymology)</term>
<term>Stramenopiles (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Cellules eucaryotes (métabolisme)</term>
<term>Cytosol (MeSH)</term>
<term>Glycolyse (MeSH)</term>
<term>Gènes (MeSH)</term>
<term>Mitochondries (génétique)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oomycetes (métabolisme)</term>
<term>Phosphorylation (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Phytophthora infestans (métabolisme)</term>
<term>Straménopiles (enzymologie)</term>
<term>Straménopiles (métabolisme)</term>
<term>Sérine (biosynthèse)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Serine</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Sérine</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Straménopiles</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Stramenopiles</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mitochondria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mitochondries</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Eukaryotic Cells</term>
<term>Mitochondria</term>
<term>Oomycetes</term>
<term>Phytophthora infestans</term>
<term>Stramenopiles</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cellules eucaryotes</term>
<term>Mitochondries</term>
<term>Oomycetes</term>
<term>Phytophthora infestans</term>
<term>Straménopiles</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Biological Evolution</term>
<term>Cytosol</term>
<term>Genes</term>
<term>Glycolysis</term>
<term>Phosphorylation</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Cytosol</term>
<term>Glycolyse</term>
<term>Gènes</term>
<term>Phosphorylation</term>
<term>Phylogenèse</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">29202688</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>03</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>02</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>17</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2017</Year>
<Month>12</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.</ArticleTitle>
<Pagination>
<MedlinePgn>241</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12862-017-1087-8</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND">An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides.</AbstractText>
<AbstractText Label="RESULTS">Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin.</AbstractText>
<AbstractText Label="CONCLUSIONS">Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Abrahamian</LastName>
<ForeName>Melania</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kagda</LastName>
<ForeName>Meenakshi</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ah-Fong</LastName>
<ForeName>Audrey M V</ForeName>
<Initials>AMV</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Judelson</LastName>
<ForeName>Howard S</ForeName>
<Initials>HS</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA. howard.judelson@ucr.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2017</Year>
<Month>12</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>452VLY9402</RegistryNumber>
<NameOfSubstance UI="D012694">Serine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="Y">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005057" MajorTopicYN="N">Eukaryotic Cells</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005796" MajorTopicYN="N">Genes</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="Y">Glycolysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009868" MajorTopicYN="N">Oomycetes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055750" MajorTopicYN="N">Phytophthora infestans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012694" MajorTopicYN="N">Serine</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058009" MajorTopicYN="N">Stramenopiles</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Compartmentalization of metabolism</Keyword>
<Keyword MajorTopicYN="Y">Glycolysis</Keyword>
<Keyword MajorTopicYN="Y">Horizontal gene transfer</Keyword>
<Keyword MajorTopicYN="Y">Mitochondria</Keyword>
<Keyword MajorTopicYN="Y">Oomycete</Keyword>
<Keyword MajorTopicYN="Y">Serine metabolism</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>07</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2017</Year>
<Month>11</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>12</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>3</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29202688</ArticleId>
<ArticleId IdType="doi">10.1186/s12862-017-1087-8</ArticleId>
<ArticleId IdType="pii">10.1186/s12862-017-1087-8</ArticleId>
<ArticleId IdType="pmc">PMC5715807</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>PLoS One. 2008 Jan 09;3(1):e1426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18183306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2003 Oct 30;318:185-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14585511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2016 Dec;23 (6):561-570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2002 Feb;18(2):298-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11847077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2014 May;13(5):1245-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24623590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2017 Feb 6;27(3):386-391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28132810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 30;274(18):12193-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10212181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Aug 18;112(33):10133-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25848019</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Feb 15;26(4):576-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20031975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protist. 2013 Jan;164(1):2-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23083534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Sep 17;461(7262):393-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Feb;81(3):519-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25438865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2012 May;61(3):539-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22357727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011 Feb 14;6(2):e16725</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21340037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2007 Aug 16;7 Suppl 2:S4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17767732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2016 Oct;16(10 ):650-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27634448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2010 Jan 15;450(1-2):18-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19818387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2012 Sep;59(5):429-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23020233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2007;2(4):953-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17446895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 1998 Jun;8(3):346-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9666331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytopathology. 2015 Jul;105(7):966-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25760519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Nov;6(21):5688-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17006878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2016 Sep 20;17 :388</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27650223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2017 Sep 11;15(9):e2003769</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28892507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jan;43(Database issue):D222-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25414356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):847-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2012 Dec;29(12):3625-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22826458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Sep;19(9):564-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24999240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Sep 20;108(38):16116-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2006 Sep;5(9):1517-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 Sep;140 ( Pt 9):2349-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7952186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Nov;33(11):2890-2898</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27512113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009 Jul 02;4(7):e6133</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19582169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 May 5;112(18):5767-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25902514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 2015 Dec;119:262-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25869000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Biochem. 2013 Oct;46(15):1339-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23680095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Oct 31;2(10):e1097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Jul;28(7):2087-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21293046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1996 Jan;178(1):149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8550409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Feb;17(2):213-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10677844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Metab. 2013 Jan 23;1(1):6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24280073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2014 Jun;31(6):1625-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24694831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Biol. 2011 Sep;115(9):882-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21872185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2015 Aug;16(8):472-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26184597</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2012 Mar;37(3):85-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22178138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2011;12(3):R29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21439036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Parasitol. 2012 Jan;42(1):1-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22142562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2017 Apr 20;13(4):e1006302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28426766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jun;73(11):3581-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17400775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Apr 15;27(8):1164-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21335321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2008 Apr 22;18(8):580-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(12):e52340</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23284996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2007 Jan;274(2):429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17229148</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2015 Apr;14(4):1113-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25670805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Aug 29;2(8):e790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17726520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009 Oct 20;10:484</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2010 Mar 12;365(1541):729-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20124341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Jul 25;16(14 ):R551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16860735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2014 Jun 05;14:119</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24898731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jul;35(Web Server issue):W585-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17517783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2015 Oct 5;25(19):R911-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26439354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2001 Aug;40(1):73-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11570519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2009 Apr 24;10(4):1911-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19468346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Parasitol Today. 1993 Apr;9(4):122-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15463728</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2016 Dec 5;371(1709):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28080985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:185-214</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Dec;26(12 ):894-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27524662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Physiol. 2015 Sep 24;6:259</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26441678</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1997 Mar;63(3):956-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9055413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2008 Sep 23;9:393</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Fungal Genet Biol. 2008 Aug;45(8):1197-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599326</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Abrahamian, Melania" sort="Abrahamian, Melania" uniqKey="Abrahamian M" first="Melania" last="Abrahamian">Melania Abrahamian</name>
</noRegion>
<name sortKey="Ah Fong, Audrey M V" sort="Ah Fong, Audrey M V" uniqKey="Ah Fong A" first="Audrey M V" last="Ah-Fong">Audrey M V. Ah-Fong</name>
<name sortKey="Judelson, Howard S" sort="Judelson, Howard S" uniqKey="Judelson H" first="Howard S" last="Judelson">Howard S. Judelson</name>
<name sortKey="Kagda, Meenakshi" sort="Kagda, Meenakshi" uniqKey="Kagda M" first="Meenakshi" last="Kagda">Meenakshi Kagda</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000925 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000925 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29202688
   |texte=   Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29202688" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024